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Abstract

The Cahn-Hilliard model was originally introduced in [5] and describes the complicated
phase separation and coarsening phenomena in the mixture of different fluids, solid or
gas where only two different concentration phases can exist stably. Let Ω ∈ Rd, d = 2, 3
a bounded domain with boundary ∂Ω. The model reads,

φt = ∆w, w = −∆φ+
1

ε2
F ′(φ) in Ω× (0, T )

∂φ

∂n
= 0,

∂w

∂n
= 0 in ∂Ω

where φ represents the phase field function, F (φ) is a double well potential and ε is a
small parameter known as ’interaction length’. The following energy law holds

E(φ) =

∫
Ω

(
1

2
|∇φ|2 + F (φ)

)
dx.

Numerical schemes to approximate the Cahn-Hilliard equation have been widely stud-
ied in recent times due to its connection with many physically motivated problems.
In this work we propose two different ways to approximate the double-well potential
term, driving to two new linear schemes. The first one is optimal from the numerical
dissipation point of view meanwhile the second one allows us to design unconditionally
stable linear schemes. We present first and second order in time linear schemes to ap-
proximate this problem, detailing their advantages over other linear schemes that have
been previously introduced in the literature. Furthermore, we compare all the schemes
through several computational experiments.
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